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Abstract The leading term in the large-N asymptotics of the isomer count of
fullerenes with N carbon atoms is extracted from the published enumerations for
N ≤ 400 with the help of methods of series analysis. The uncovered simple N 9 scal-
ing is distinct from isomer counts of most classes of chemical structures that conform
to mixed exponential/power-law asymptotics. The second leading asymptotic term is
found to be proportional to N 25/3. A conjecture concerning isomer counts of the IPR
fullerenes is also formulated.
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1 Introduction

Recent advances in graph-theoretical algorithms have opened new vistas for enumer-
ation of chemical isomers. In particular, significant progress has been achieved in the
case of fullerenes CN , of which all structures with N ≤ 400 have now been generated
[1,2]. The availability of these data has prompted speculations concerning the behav-
ior of the fullerene isomer counts at the N → ∞ limit, both the N 9 [3] and N 19/2

[4] asymptotics being inferred from crude log–log plots and supported by heuristic
arguments. For the reason spelled out in the following, this simple power-law scaling
appears unlikely at the first glance.
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Complete information about isomer counts for a class of chemical species is
encoded in the generating function F(t) given by the for formal series

F(t) =
∞∑

k=1

M(k) tk, (1)

where M(k) is the number of isomers comprising k units (such as atoms, bonds, rings,
etc.). Since, in general, M(k + 1) ≥ M(k) for all k > 0, the series (1) possesses a
finite radius of convergence. Consequently, F(t) possesses at least one singular point,
at which it behaves like (tc − t)ζc , where 0 < tc ≤ 1. The smallest critical point tc
and the corresponding critical exponent ζc determine the leading term in the large-k
asymptotics of M(k), which reads

M(k) = A t−k
c k−(ζc+1) + · · · , (2)

where A is a constant. Typically, tc < 1 (e.g. ca. 0.35518 for alkanes [5], ca. 0.20915 for
polyenes [5], and 1

5 for catafusenes [5–7]), giving rise to the mixed exponential/power-
law asymptotics (2). On the other hand, the alleged power-law scaling of the fullerene
isomer counts would imply tc = 1.

In order to investigate this matter, in this note we invoke the mathematical formalism
of series analysis that is commonly used in lattice statistics [8]. Such a formalism has
been previously employed in successful extraction of the asymptotic isomer counts of
several classes of chemical structures [5].

2 Series analysis

Let M(k) be the number of isomers of the C2k fullerene. Let U0 = 1, W0 = 0, and
{Uk, k = 1, . . . m}, {Vk, k = 0, . . . m}, {Wk, k = 1, . . . m} be the solution of the
system of equations

m∑

j=0

[
U j (k − j)2 + Vj (k − j) + W j

]
Ck− j = 0, k = 1, . . . , 3m − 2, (3)

where

Ck =
{

M(k + n) for k ≥ 0
0 for k < 0

. (4)

Let

Q(z) = z
m∑

k=0

Uk zk (5)

and
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Fig. 1 The deviations of the estimates zc from 1 versus n for 1 ≤ m ≤ 20 (gray), 21 ≤ m ≤ 40 (red), and
41 ≤ m ≤ 66 (black) (Color figure online)
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Fig. 2 The deviations of the estimates ηc from −10 versus n for 1 ≤ m ≤ 20 (gray), 21 ≤ m ≤ 40 (red),
and 41 ≤ m ≤ 66 (black) (Color figure online)

R(z) =
m∑

k=0

(Uk + Vk) zk . (6)

The smallest positive root zc of Q(x) and the quantity ηc = 1 − R(zc)/Q′(zc) yield
unbiased estimates for tc and ζc, respectively [5,8]. In general, the accuracy of these
estimates increases with both n and m.
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Fig. 3 The ratios MI P R(k)/M(k − k0) for k0 = 24 (red) and k0 = 25 (black) (Color figure online)
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Fig. 4 The reduced isomer count M(k)/k9 versus k−2/3

3 Results and conclusions

Application of the aforedescribed formalism to the isomer counts reported in Ref. [1]
produces estimates that clearly converge to tc = 1 (Fig. 1) and ζc = −10 (Fig. 2). Thus,
the leading term proportional to N 9 in the large-N asymptotics of the isomer count
of fullerenes with N carbon atoms is now firmly established (although not rigorously
proven).
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The present result imposes the same asymptotics for the isomer count MI P R(k)

of the IPR fullerenes with 2k carbon atoms as 0 < MI P R(k) < M(k) and
limk→∞ MI P R(k)/M(k) → 1. Curiously, inspection of the published data [1] allows
one to formulate the following conjecture (see Fig. 3):

For all k > 53, M(k − 24) < MI P R(k) < M(k − 25), i.e. for all N > 106, the
number of the IPR fullerene isomers with N carbon atoms is bracketed by the total
numbers of isomers of the CN−50 and CN−48 fullerenes.

The second leading term in the large-k asymptotics of M(k) is also of interest.
As revealed by the plot of M(k)/k9 versus k−2/3 (Fig. 4), this term scales simply as
k25/3 and is negative. The combination of the N 9 and N 25/3 asymptotics explains the
apparent N 19/2 scaling deduced from a crude log–log plot [4].
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